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Hubbard model with short-range hopping in the 
strong-coupling limit 
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School Of Physics, Birmingham University. Edgbaston. Birmingham B15 ZTT, UK 

Received 13 September 1993, in final form 26 April 1994 

Abstract. In the limit of dominant nearest-neighbour hopping and infinitesimal semnd- and 
third-nearest-neighbour hopping, the Hubbard model is solvable in the sense that it separates 
into two models which have previously been analysed in the literature. The solutions ze spin- 
charge separated and involve highly correlated motion of the electrons. Although in gene& the 
solutions are too complicated to analyse, there are two quite specific states which are amenable to 
direct analytical attack the phase boundary between the quantum paramagnet and the Nagaoka 
ferromagnet, and the 'dimer' phase where all spins pair up in10 nearest-neighbour singlets. 
We have been able w evaluate bolh (n(k)) and (S-x . S,) accurately enough to deduce the 
qualitative behaviour for the two types of state in question. The second of these correlation 
functions is directly relevant to neumon-scattering studies. Although the solutions are highly 
correlated and spin-charge separated. the correlations are reminiscent of the non-intencling 
'spinfull' free-electmn gas solution, the spin response exhibiting a divergence where the non- 
interacting susceptibility does, for example. 

1. Introduction 

The behaviour of strongly correlated electrons is a central theme in many-body physics. 
Perhaps the simplest model for which the strong-coupling limit is considered is the Hubbard 
model [l], and there is currently a great deal of theoretical interest in the low-temperature 
behaviour inherent to this model. Unfortunately, the model is rather subtle, and the current 
rigorous knowledge is restricted mainly to one dimension, where the Bethe unsuiz has 
been -used to find the spectrum for the model with nearest-neighbour hopping [Z]. These 
exact solutions are a great advance, but in some respects they are not complete. The 
complexity of the mathematics is such that even quite elementary correlation functions, that 
one would consider routinely for a non-interacting solution, are inaccessible. In this article 
we will calculate some correlation functions for the Hubbard model in a limit for which 
the mathematics is rather less formidable, although the solution retains the fundamental 
characteristic of being spin-charge separated. 

Recently the present authors have developed a new method for solving a class of one- 
dimensional Hubbard models, in a strong-coupling but restricted limit [3]. The solution 
involves taking the U = CO case, where the charge motion is that of spinless fermions but 
the spin physics remains degenerate, and then focusing on the manner in which the spin 
degeneracy is lifted by additional interactions. Although we &I handle the natural case 
of U c CO perturbatively, we have thought more about the role of longer-range hopping, 
a situation which cannot be handled by the Bethe unsatz. In this article we will focus on 
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two quite simple spin states and evaluate some correlation functions associated with the 
original electronic degrees of freedom, namely the Bloch disti+bution function, (n (k ) ) ,  and 
the spin-spin correlation function, (SL . Sd. 

Although the physics of the U = 03 squae-lattice Hubbard model remains a mystery, 
there are some concrete ideas which appear relevant: in the limit very close to half filling, 
where the physics is controlled by a few well separated holes, Nagaoka ferromagnetism 141 
may well be relevant and in the nearly empty limit, where the physics is controlled by a 
few well separated electrons, Kanamori paramagnetism should be relevant [5] .  One can 
envisage the physics, as a function of doping, as being a competition between these two 
phenomena with some form of transition between the two distinct regions of dominance. 
For our chosen limit there is a definite ferromagnetic phase, and we are studying the phase 
that the ferromagnet transits into at the phase boundary, and consequently we are looking 
at the region of maximum competition. 

There has been an enormous effort in the literature devoted to attempting to calculate 
and understand the quantity, (n(k)), for low-dimensional systems. The existence or non- 
existence of a discontinuity has been associated with ‘Fermi-liquid‘ behaviour, and for the 
exactly solved one-dimensional models there is a singularity at the Fermi energy but not 
a discontinuity. The calculations that we have made for this quantity do not even show 
a singularity at the Fermi energy, and we atiribute this behaviour to the characteristics of 
the underlying spin physics. One should not necessarily expect all spin-charge-separated 
solutions to have similar behaviour to the Bethe ansa@ solvable onedimensional models. 

In section 2 we explain the solutions in our chosen limit, focusing on the particular 
parameters that we will deal with. In section 3 we evaluate our chosen correlation functions 
in terms of determinants, in section 4 we interpret our results, and in section 5 we conclude. 

2. Exact solutions 

The Hubbard model in the limit that the Hubbard repulsion diverges, U = CO, reduces to a 
one-parameter model, the t-model: 

where cj,, (cj.,) creates (annihilates) an electron of spin U (complementary spin 5 )  on an 
atom i. The model hops electrons between nearest-neighbour atoms, denoted by (ii‘), and 
the factors (1 -c /~c~z )  ensure that sites can never become doubly occupied, hence enforcing 
the constraint that one charge state for each atom is eliminated that with two e l e o n s  on 
the atom. The motion of the electrons is dominated by ‘bumping’ into each other in this 
limit, and in one dimension there is no way for electrons to pass each other at all. The 
charge motion is controlled by the matrix element t,, and the spin order along the chain is 
conserved on this energy scale and is lifted on a much weaker energy scale; in this article 
by weak longer-range hopping. 

In order to successfully describe the behaviour of the one-dimensional Hubbard model, 
we need to use a representation for which the charges can move while the spin order along 
the chain remains frozen. To this end we have introduced a representation for which the 
spins and charges are separated: 
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where the fi' operators are assumed fermionic and control the motion of the charges alone, 
and the spins are ordered along the chain and are controlled directly with spin operators, sa. In terms of this representation, the original hopping becomes, in the thermodynamic 
limit 

x [1 +&'I %.a,+"-l (2.3) 

where the xi measure whether or not an electron is on a particular site i, and in terms of 
which the cur = xm count how many electrons come before a particular site, making 
a useful spin label. The first two f operators move the charge. The summations over the 
x variables break the states down into all possible charge configurations between the two 
end points of the charge transfer. The operator involving the z-component of spin ensures 
that the electron moved has the correct spin, and the final spin arrangement conserving the 
spin order along the chain is effected by 

1 

(2.4) 

which involves a string of spin operators which shuffle the spins along conserving their 
order along the chain. Each term [$ + 2Sa . &a+l] provides an elementary permutation of 
the two spins involved, and so the product is just a simple cyclic permutation of the relevant 
spin variables. Due to the central role that these cyclic permutations hold in our analysis, 
we have introduced a notation for such a permutation, ka,,+., and we are using the letter R 
to represent the idea of 'ring exchange' which is often how this concept has been labelled 
in the literature. 

The inclusion of longer-range hopping is accomplished by: 

where the r, are infinitesimal matrix elements of variable relative magnitudes. Although 
the solution to our chosen limit of finite tl and infinitesimal tn (n > 1) was dealt with 
in previous work 131, we will swiftly review the argument here. In our chosen basis the 
dominant nearest-neighbour hopping becomes 

which lifts the charge degeneracy to yield a non-interacting spinless fermion gas, but which 
leaves the spin degrees of freedom degenerate. The low-energy spin physics is then decided 
by the infinitesimal longer-range hopping, which in degenerate perturbation theory yields 
an effective spin interaction. To leading order the charge motion remains unaffected, and 
so the form of the effective spin interaction can be deduced immediately from (2.3) to be. 

Hdeg = KO + K" [$.a+n + cc] 
n a 

(2.7) 
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where the matrix elements, Kn, are the amplitudes for electrons to hop past specific numbers 
of other electrons in the spinless fermion ground state. Simply substituting (2.3) into (2.5) 
immediately yields 

where the &function ensures that exactly the correct number of electrons are involved in 
the exchange, the periodicity inherent in the chargemotion ground state ensures that we 
may consider a particular site to measure correlations from, and we must evaluate these 
correlation functions for the spinless fermion ground-state wavefunction. The form and 
structure of this result can easily be understood physically: for our basis, a longer-range 
hop carries an electron over any electrons in between the two end points of the hop. This 
amounts to a ring exchange acting on the spin wavefunction, but involving the number of 
electrons between the two end points, which is a variable. Although it is clear that the 
action on the spin wavefunction is just ring exchanges of different lengths, the range of the 
exchange and the amplitude must be deduced. Obviously, the maximum number of spins 
which can be involved occurs when the chain is completely filled between the end points of 
the hop. This explains why we only get a contribution to the ring exchange amplitudes, Kn, 
from hops of longer range than the number of spins involved. The amplitude of the ring 
exchange is more subtle, because it depends on both the probability of finding exactly the 
correct number of electrons between the end points, and the likelihood of finding the new 
charge configuration once the electron has actually been moved in the original ground state. 
These probabilities obviously depend on what the electrons are doing in the charge ground 
state, viz. the spinless-fermion gas. The matrix elements in equation (2.8) are precisely 
the likelihoods of the electron hopping between the two end points and simultaneously 
finding exactly the correct number of electrons required in between in order to achieve a 
ring exchange involving the desired number of spins. Each individual contribution can be 
found in terms of a single determinant involving the single-particle correlation functions, as 
is proved in the appendix. Obviously this procedure is numerically intensive, and we have 
not gone beyond about twentieth-nearest-neighbours without employing 'tricks'. 

In a previous article we considered next- and next-next-nearest-neighbour hopping, 
deducing the spin Hamiltonian and then recognising it in terms of models solved previously 
in the literature [3]. Here we will briefly indicate how the argument works in order to give 
the current calculations more foundation, since they build on these previous results. 

The next-nearest-neighbour hopping takes the form 

while the third-nearest-neighbour hopping takes the form 

(2.9b) 



JD Hubbard model with short-range hopping 6585 

in our new basis. In degenerate perturbation theory this immediately reduces to 

= KO + Ki C(1+ 45, * &+i) 
a 

(2.10) 

a 01 

where we have used a spin identity to deduce the final result. We immediately recognize the 
one-dimension81 JI-Jz model, with the nearest-neighbour spin interaction J1 = 4(K1 + Kz)  
and the second-nearest neighbour interaction JZ = 2Kz. In general we have tz/t3 and 
the electron concentration as parameters, and J1 and JZ have strong dependence on these 
parameters [3]. 

In practice, the JI-J2 Hamiltonian is much too difficult to treat rigorously, with the 
exception of a few special cases. We will ignore the immensely complicated Bethe ansatz 
solutions, and in this article we focus on two particular cases and generalise the current result 
to correlation functions for such ground states. We are restricting attention to next-nearest- 
and next-next-nearest-neighbour hopping, because longer-range hops include longer-range 
ring-exchange interactions and we cannot solve such interactions. The two particular cases 
are firstly, the state for which the spins form the quantum analogue of the NLel state (viz. 
51 = 0 and JZ 0, and hence, 0 > K I  = -& # 0 and other amplitudes K vanish), and 
secondly the ‘dimer’ phase with nearest neighbours paired into singlets (viz. 31 = 2Jz > 0, 
and hence K1 = 0.0 c K Z  # 0 and other amplitudes K vanish). The state with 52 > 0 and 
0 c J1 H 0 achieves long-range Nkel order in the limit, with the two sublattices becoming 
saturated and antiparallel. The state with 2Jz = J1 yields the famous Majumdar-Ghosh 
nearest-neighbour paired-valencebond ground state. 

Previously, we considered either next- or next-next-nearest-neighbour hopping 
independently, but here we will permit a competition between the two in order to allow our 
chosen phases to become stable over a range of band filling. Our final task is to find the 
particular parameters that correspond to our chosen gound states. For ow chosen model 
the relevant correlation functions from the spinless fermion gas are 

in terms of simple correlation functions which can readily be evaluated. We can readily find 
the lines in parameter space for which our chosen states are stable by forcing the relevant 
constraints on the amplitudes K of (2.11). Setting K1 + Kz = 0 yields the phase boundary 
between ferromagnetism and paramagnetism, and setting K1 = 0 yields the parameterization 
for which the ‘dimer’ phase is the ground state. We depict these two lines in figure 1 .  
Although we have plotted these two lines on the same graph, bear in mind that the signs of 
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R a t i o  o f  Matrix Elements : 

Electron liunbei 

Fwre 1. The ratios of the second-mst-neighbour hopping mavix element to the third- 
nearest-neighbour hopping maIrix element ( rz / t3) ,  for the N&l state (solid line) and dimer state 
(dashed line). For the N€el sme the third-nearest-neighLmr matrix element has the Same sign 
as the neami neighbour, while for the dimer me the phases an: opposite. 

the pair of matrix elements are reversed, with the N&l state involving the same sign for the 
nearest-neighbour and next-next-nearest-neighbour m a i x  elements, and with the ‘dimer’ 
state finding opposite signs. This figure indicates that there are realizations of our chosen 
ground states for all possible choices of hand filling, but it does not indicate whether or not 
these particular realizations are probable. 

We are able to evaluate correlation functions for a range of infinite3 Kubbard models 
with dominant nearest-neighbour and infinitesimal next-nearest- and next-next-nearest- 
neighbour hopping. We allow any concentration of electrons, but force the ratio of the 
two infinitesimal hopping matrix elements to lie on the curves depicted in figure 1. For the 
long-range-ordered antiferromagnetic spin state we have 21 > 0 and t3 > 0, with tz being 
defined by the full line of figure 1. For the dimer state we have tl > 0 and r3 < 0, with tz 
being defined by the dashed l i e  of figure 1. To be physically relevant, we would prefer to 
work with a bipartite lattice, and so the most ‘interesting’ region of parametrization is where 
the solid line passes through zero (the relative phase for the dimer phase matrix elements 
is always frustrated, since 21 t3 < 0). 

Having explained our choice of ground states, we now set a physical context for them. 
The usual way to interpret the Hubbard-model phase diagram is in terms of the electron 
concentration, with the physical process of doping the system being the motivation. In 
this picture the matrix elements, r,, are presumed fixed, unlike the collection of states 
we are currently considering. For the usual bipartite systems, the expected picture is 
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for paramagnetism at low concentration, where only pairs exchange, becoming unstable 
to ferromagnetism at high concentration where only triples exchange. Our Ndel state 
corresponds precisely to the phase transition between these two phenomena, but examined 
from the paramagnetic side. The only unfmstxated geometry available to us is the case 
tz = 0 and i3 > 0. This case shows precisely the expected behaviour, with the transition 
occuring at n, - 0.6675. In order to stabilize our N&l state to other concentrations, we 
have resorted to including some frustrated bonds into the system. Using t, > 0 stabilizes 
paramagnetism whereas tz < 0 stabilizes ferromagnetism. 

A couple of relatively easy to understand limits are as follows. (I) The nearly empty but 
strongly correlated limiL where the spin degeneracy is lifted by electrons coming together 
rarely. There is four times the chance of hopping past an electron with a thii-neighbour 
hop than with a second-neighbour hop, and so the hops compensate when 4t2 + i3 = 0. 
(2) The nearly full limit, where a single hole locally controls the spin degeneracy. Second- 
neighbour hops promote singlets while thiid-neighbour hops promote ferromagnetism, and 
so the hops compensate when tz = t3. 

Having chosen our ground states, we now move on to a calculation of our chosen 
correlation functions. 

3. Correlation functions 

At first sight, one might think that we could evaluate the current correlation functions for 
any values of the parameters, but this is not the case. The problem is not the mapping, 
which remains valid, but the solution to the resulting spin Hamiltonian which is in general 
too hard to find. Even for the case of the nearest-neighbour Heisenberg model, which 
has been solved via the Bethe onsatz, we would need the spin-spin and ring-exchange 
correlations as a function of range, and to our knowledge these correlation functions have 
not been evaluated in the literature. The only cases that we can handle are those for which 
the resulting spin state is effectively trivial, and this restricts e n t i o n  to the two states that 
we have focused on. 

The first correlation function that we will consider is the single-particle Bloch- 
momentum density, (nk)  = C,(cLcka) .  which would have a discontinuity at the Fermi 
surface if the system were a Fermi liquid. We have already developed the mathematics, and 
all that is now required is to evaluate the correlations in the ground-state charge and spin 
wavefunctions. The quantity that we need to consider is 

where the charge ground state is the non-interacting spinless-fermion gas, and the spin 
wavefunction is either the quantum N6el state or the 'dimer' paired state. At first sight, one 
might think that one may find a closed-form solution, but in fact this is impractical. Indeed, 
even to evaluate the correlation function for length n, we have been forced into numerically 
evaluating an equivalent n x n  determinant. Taken at face value, a direct numerical evaluation 
of (3.1) would entail 2"-' different n x n  determinants, a computationally extremely intensive 
task. Fortunately, for the two states central to the current investigation, we can re-express 
the correlation functions in terms of a single n x n determinant 

First let us consider the quantum N6el state: the state for which the two sublattices 
are saturated and combined in a total-spin singlet. It is elementary to calculate the ring- 
exchange correlations, which all vanish, since no matter what the range of the exchange, 
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at least one spin is transferred to the other sublattice yielding an orthogonal spin-state. For 
this case the only non-vanishing contribution comes from when no particles are exchanged, 
viz. when the order of the particles is invariant and particles only hop across vacant atoms. 
The correlation functions reduce to 

M W Long et a1 

which is evaluated as a determinant in the appendix. We have plotted the Fourier transform 
in figure 2 for a spread of band fillings. The plots may be treated as being effectively exact, 
since the chosen correlation functions decay exponentially and can therefore be calculated 
on all relevant length scales. Although one can see a remnant of the spinfull Fermi step 
function, the sharp structure has been completely 'washed out' and only a smooth curve 
remains. Interpretation will be attempted in the next section. 

Figure 2. Plots of (n(k)),  for band fillings of no = 0.2.0.4.0.6 and 0.8, in the N&l-state phase. 
The higher concenuarions yield a larger contribution at the zone boundary. 

The situation for the dimer phase is more subtle, since the ring-exchange correlations 
do not vanish. Using the fairly well known result that the overlap between two distinct 
valence bond configurations is i 1 /Zd- ' ,  where d is the number of inequivalent valence 
bonds in one configuration, it is possible to show that 

( 3 . k )  

(3.3b) 
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for n > 0. After a brief consideration of how to tell whether one has an odd or even number 
of electrons on a region of the lattice, one is drawn inexorably to the conclusion that 

where i is the square root of (-1). Once again, this expression can be rewritten as a single 
determinant as shown in the appendix. We have plotted the Fourier transform in figure 3 for 
a range of band fillings. The plots are seen to be smooth, but there is much more structure 
as will be commented on in the next section. 

Figure 3. PlooI of (n(k)),  for band fillings of no = 0.2, 0.4,0.6 and 0.8, in the dimer-state 
phase. The higher concentrations yield a larger contribution at the mne boundaw. 

We now tum our attention to the spin-spin correlation functions, (Si . Si+.). Since 
there is no actual transportation of electrons for this process, we do not have to consider 
ring exchange. In fact, all we need to do is measure the correlations between the spins 
which happen to be on the relevant atoms. This is simply 

where the complications arise because it depends how many electrons are between the two 
atoms as to which spins are to be correlated. In order to make use of this result, we need to 
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be able to evaluate the spinspin correlations for our spin wavefunction, which is elementary 
for both of our chosen solutions. 

For the quantum N6el state, the spin-spin correlation functions x e  those of the classical 
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N&I state: 

and so, once again, it is important to be able to evaluate the probability that there is either 
an even or an odd number of electrons on a particular set of atoms. With a little algebra, 
it can be shown that 

(3.7) (-1) 
16 (Si . Si+") = - [pn-~ - 2 p n  + p n + ~ ]  

for n > 0, with (Si . Si) = {(fife), in terms of the average 'fermionic phase change' 
operator: 

for n 0 and with Po = 1, which measures the average phase that a fermion picks up 
when hopping past n atoms. Once again, this type of correlation function can be expressed 
as a determinant, as explained in the append=. In figure 4 we have plotted the spin-spin 
correlation function for various band fillings, and unlike previous calculations, the results 
are not effectively exact. There is a divergence which is clearly visible, and our truncation 
of the Fourier transform at finite range has both cut off this divergence and included some 
artificial oscillations into the functions. We will comment on this result in the next section. 

For the dimer state, the spin-spin correlations are precipitously short range, vanishing 
for next-next-nearest neighbours and beyond. This result restricts the contributions to those 
where there are vacant atoms between the two spins, which leads quite duectly to 

(3.9) (-3) (Si .si+.) = 8 [an-, - 2 Q n  + &.+I] 

for n z 0, with (Si . Si) = ;(f:f,tfo), in t e m  of the probability that a length of chain 
happens to be vacant: 

(3.10) 

for n > 0 and with Qo = 1. Once again, we find a representation which is amenable 
to calculation via a single determinant, as shown in the appendix. We have plotted some 
examples in figure 5, for various band fillings, and will comment on the form in the next 
section. 
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0.2 0.4 0 . 6  0 . 8  I 

Figure 4. Plots of (S-x . Sd, for band fillings of no = 0.2,0.4.0.6 and 0.8, in lhe NM-state 
phase. The calculations have not converged, we used a range of about 400 atoms. and the 
‘spikes’ are believed to diverge logarithmically in the limit that the range diverges. The higher 
concentrations yield a larger contribution at the zone boundary. 

4. Interpretation 

For a spin-chargeseparated system an evaluation of (n(k)) might at first sight appear 
absurd, but there are a couple of motivating facts. Firstly, for a Fermi liquid it is believed 
that this quantity will have a ‘step-like’ discontinuity and this behaviour can be discounted 
by direct calculation and the likely behaviour inserted in place. Secondly, since the chosen 
Hamiltonian involves hopping over various ranges, this quantity is a fairly direct measure 
of where in reciprocal-space kinetic energy is gained and where it is lost. 

In the standard discussions of one-dimensional models, one often finds residual 
singularities at the Fermi wavevector 161. We find no such behaviour, since our real-space 
contributions decay exponentially yielding smooth behaviour at the Fermi momentum. The 
cause is obvious: the ring-exchange correlations for our two states are precipitous, while the 
corresponding correlations for the Heisenberg ground state, found in the nearest-neighbour 
Hubbard model, have long-range character [7]. It is the spin wavefunction which controls 
this behaviour, and we have chosen quite different spin states to those previously considered. 
Obviously it is important to decide which of the two options is more relevant to consider 
for a two-dimensional system, but we have been unable to resolve this issue, having little 
basic understanding of the likely spin wavefunction in two dimensions. 

The kinetic energy issue is rather more interesting, involving the use of the spin degrees 
of freedom in order to optimize the shape of (n(k)). The dominant nearest-neighbour 
hopping acts as an integral constraint on this function, because the charge ground state is 
invariantly the spinless fermion ground state, leading to an unchanging overlap with cosnk. 
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Fourier Transform 

Fwre 5. Plots of (S-x . Sd, for band fillings of no = 0.2.0.4.0.6 and 0.8, in Ihe dimer-state 
phase. The higher concentrations yield a larger contribution at lhe zone boundary. 

Only the higher Fourier components are affected by the lifting of the spin degeneracy, and of 
these only the first two make a contribution to the energy. In figure 6 we plot the contribution 
to the kinetic energy which lifts the degeneracy for a particular case of the dimer phase. 
Comparison with the (fiifi) = 0.8 curve in figure 3 shows that the electrons are peaked 
in the best regions, as expected. These considerations lead to a fairly direct interpretation 
of the content of our calculations: we are ttying to find the spin state which yields the 
maximum degree of short-range hopping with the chosen strengths, or equivalently with 
the maximum degree of overlap with the degeneracy-breaking kinetic-energy dispersion in 
reciprocal space. The difficult physical constraint is that the state chosen must be a quantum 
spin-half state, and solving the equivalent quantum spin problem is difficult. 

The spin-spin correlation functions are physically more interesting, and indicate 
what might be expected from neutron-scattering experiments. Although the two spin 
wavefunctions that we are dealing with are elementary, the observed spin correlations are 
more subtle, because the neutron sees the spin dependence of the atoms and not the ordered 
electrons. Although the spins in the Nkel phase have long-range order, the atoms on which 
they are found are spaced out according to the band filling and fluctuate according to the 
fast spinless fermion motion. In practice we observe a convolution of the spin wavefunction 
'averaged' over the charge motion. Due to some subtleties associated with the Nee1 state, 
we will deal with the dimer phase first. 

The spin correlations in the dimer phase exist only between neighbouring electrons, and 
so the range of the observed spin correlations is controlled by the probability function for 
finding neighbouring electrons a certain distance apart. Also, the ground state is a total- 
spin singlet and so there can be no long-range ferromagnetic spin correlations. We would 



ID Hubbard model with short-range hopping 6593 

F o u r i e r  Transform 

Figure 6. The dispersion that lifts the spin degeneracy for the case of the dimer-state phase 
with a band filling of no = 0.8. The 'troughs' in the dispersions clearly coincide with the peaks 
in the relevant plot in figure 3. 

expect to see an antiferromagnetic response, peaking at the average inverse separation of 
the electrons, and this is exactly what is observed. 

The NCel phase is more subtle. Firstly, although for finite systems the quantum 
N k l  state is a total-spin singlet, in the limit where the system size diverges we find 
the classical NCel state on all finite length scales. Although the point k = 0 is special, 
there is a limiting contribution yielding short-range ferromagnetic correlations. Secondly, 
immediately obvious from figure 4 is a divergence in the spin density. This is caused 
by the fact that the long-range correlations inherent in the spin wavefunction are being 
convoluted with less obvious long-range correlations in the charge wavefunction. Although 
the spinless Fermi gas is metallic, there are very long-range correlations associated with the 
state where we have equidistant fermions. These correlations show up in the quantity Pn, 
which measures (indirectly) the average number of particles in a region of length n: there 
are long-range contributions associated with the average. It is this fact which causes the 
divergence. Neutrons will see the N k l  ground state on a length scale associated with the 
average distance apart of the electrons. The weakness of the divergence comes from the 
metallic behaviour of the charges, which fluctuate in position, but not enough to wash out the 
divergence altogether. Interestingly, the observed spin correlations are remarkably similar to 
the susceptibility of the spinfull free-electron gas, which has a similar logarithmic divergence 
at '2k~. We have plotted the spin-spin correlations, (S-t. &), and the spin-susceptibility 
for the non-interacting free-elecmon gas in figure 7, for a band-filling of no = 0.8, and the 
similarity with figure 4 is clear. We cannot say that we understand why the interacting spin 
correlations are similar to the non-interacting spin susceptibility, but we do feel that the 
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ReCiwocd l  Space I X i P I i  

Figure 7. The spin-spin correlations (dotted line), (S-x . Sk), and spin susceptibility (full 
line) or Lindhard function for the non-interacting free-electron gas at band filling no = 0.8. The 
logarithmic divergeace ai Un is clearly reminiscent of the divergence present in our spin-charge 
separated calculations of the spin-spin cmlations (figure 4). 

result is interesting. 
Another relevant fact is that one can associate these spin correlations with the spiralling 

discussed in the weakly doped perovskite superconductors [SI, which has a similar natural 
interpretation: the Nbel correlations found in the parent compound become spread out by 
the doped holes, which act as spacers changing the pitch of the spiral. 

It is crucial to try to understand what might be expected in the square-lattice geometry 
of current interest: would we expect similar long-range spin correlations? The cause of 
the spin-spin divergence in our model is clearly partly related to the onedimensional 
nature of the system: as well as the long-range N&l spin order, there are also long-range 
charge correlations present in P, of (3.8). Independent of whether we can predict the spin 
wavefunction, we would not expect such long-range charge correlations, because the two- 
dimensional motion eliminates such linear onedimensional correlations. Direct calculation 
verifies that electron-number fluctuations in a fixed area in two dimensions are also stronger 
than the corresponding fluctuations in one dimension. Any corresponding effects would 
be controlled by more subtle arguments than has been presented here, and so we have no 
pertinent evidence for the behaviour of a two-dimensional system. 

The cause of the long-range spin correlations is partly the very uniform distribution of 
charge in the system. If the electronic charge motion were more highly correlated, then 
we might expect a change in this divergence. In order to examine this question we have 
performed some 'Hartree-Fcck' calculations on the model with finite longer-range hopping. 
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We will not go into the details of the calculations, but just give a broad outline. We 
make two uncontrolled approximations: firstly, we assume that the spin-charge separation 
is complete, and that the spin and charge wavefunctions are independent. Secondly, we 
cannot solve the resulting charge Hamiltonian exactly, and so we perform a Hartree-Fcck 
analysis for the correlations, namely, we presume that the ground state can be described by 
a non-interacting fermion state, although we do allow pairing correlations. For the system 
currently under consideration, the effective spin Hamiltonian is still the JI-Jz Heisenberg 
model, and so we can tune our parameters to ensure that the spin wavefunction is the N6el 
state. The resulting charge Hamiltonian involves hopping only across vacant atoms, and 
so pairing correlations are induced to promote a higher probability of finding such regions. 
The resulting additional charge motion, which corresponds to superconductivity in higher 
dimensions, would be expected to decorrelate the long-range uniformity of charge and to 
eliminate the divergence in the spin correlations. A particular case is plotted in figure 8, 
and the loss of the divergence is readily seen. The additional complexity involved in the 
evaluation of the determinant is briefly mentioned in the appendix. 

0 . 2  0 . 4  0 .d 0 . 8  

Figure 8.  Plots of (S-r . Sk), for the N&l-state phase for the trio of cases ( 1 1 .  fz, 13) = 
(1.0.0.3, l.O), ( t l , h , g )  = (I.O,O.Z5.0.75) and ( rL, f2 . t3)  = (1.0,0.15,0.5). We have 
separated the curves via additive constants of two. because otherwise they would lie on top 
of each other. Although the stronger hopping cases have converge& the weakest case has 
longer-range correlations than we have calculated. The stronger values of hopping clearly yield 
only short-mge spin-spin correlations. 

5. Conclusions 

For a particular class of Hubbard models in quite restrictive limits, we have been able 
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to deduce the form of some electronic correlation functions. The systems are all one 
dimensional and spin-charge separated, and the spin wavefunctions are fairly extreme cases. 
The physics suggested by the calculations is, however, quite instructive. 

The limit that we examine is that of a nearest-neighbour U = CO Hubbard model in 
one dimension, which is solved up to spin degeneracy by the spinless Fermi gas. We are 
interested in how additional interactions then lift the spin degeneracy and which types of 
state are stabilized. Longer-range hopping can stabilize various types of spin state, and we 
have selected two very simple examples to study: firstly, we have looked at the quantum 
N&l state which is found on the border between paramagnetism and ferromagnetism, a 
particularly important region of parameters for the experiments, and secondly we have 
looked at the ‘dimer’ phase which might be relevant to a highly frustrated geometry. 

We looked at (n(k) ) ,  which has little obvious experimental significance, but is central to 
some theoretical bickering and measures the degree of success that the Hubbard model has 
in making use of the additional hopping degrees of freedom. The results for both states are 
similar, in the sense that the curves are completely smooth and involve no singularities 
as have been predicted by Luttinger liquid theory 191. The reason is straightforward 
for both states the relevant spin correlations decay exponentially and although the charge 
wavefunction has helpful characteristics, the spin wavefunction washes the correlations out. 
The behaviour of our systems might be deemed pathological, but this remains to be seen. 
One thing that is clearly true is that the low-lying excitations for the N k l  system are spin 
waves and nor spinons, which may be another way to explain why no Fermi singularity 
might be expected. The low-lying excitations for the dimer system are solitons at the 
relevant Fermi wavevector, but the existence of a spin gap is probably sufficient to eliminate 
singularities at the Fermi energy for the ground state. Only in systems for which the low- 
lying excitations are collective ‘shuffling’ modes might we expect a singularity at the Fermi 
surface, as in the nearest-neighbour Heisenberg model for example [IO]. Unfortunately, 
systems controlled by ‘collective’ phenomena are more difficult to analyse than the systems 
under current investigation. 

In the standard discussion of the singularity in (n(k)),  a power law is expected, where, 
for the Hubbard model, the power ranges from one-eighth in the strong coupling limit 
down to zero in the weak-coupling limit. We presume, for next-nearest-neighbour hopping, 
that for our model this power varies smoothly from one-eighth in the low-density limit, 
where the spin system is the Heisenberg ground state, up to unity at the boundq with 
ferromagnetism, where the spin system is the N&l state. This rather different behaviour 
stems from the rather stronger physics inherent in longer-range hopping. 

We also looked at (S-k. Sk), the spin-spin correlation function. Due to the precipitous 
spin correlations in the dimer phase, the system exhibits short-range antiferromagnetic 
correlations, as might be expected. The N6el system is rather more interesting. Although 
the long-range correlations in the spin wavefunction do not show up in the ring exchange, 
they do show up in two-particle correlations, like the spin susceptibility. We find long- 
range spiralling correlations, as are predicted by classical considerations [8], which can be 
understood in terms of ‘smearing out’ the antiferromagnetism over the spaced out electrons, 
with the pitch of the spiral being controlled by the average electron separation. Due to long- 
range charge correlations there is a divergence in this spin-response, but charge fluctuations 
expected for finite longer-range hopping should wash this out, leaving only short-range 
correlations to be expected experimentally. An approximation scheme alluded to in the 
main test bears out this hypothesis. 

Perhaps the most important consideration is whether or not these calculations tell us 
what to expect for the two-dimensional system of current experimental interest: Perovskite 
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superconductors. Unfortunately, any deductions are too tenuous at present, although various 
things ought to be said. The first and most important consideration is whether or not the 
two-dimensional Hubbard model is in fact spin-charge separated This problem is way 
beyond the technical expertise of the authors, although at least one of us believes that it 
probably is. Secondly, ifthe Hubbard model is spin-charge separated, what is the nature 
of the two components? One would expect that the charge degrees of freedom would be 
a bosonic condensate [ 111, but thinking ahout the spin degrees of freedom is much worse. 
The existence of the 'Fermi surface' in photoemission suggests spin-half excitations and a 
collective picture for the spin physics: the most difficult possibility to deal with. 

In conclusion, we have looked at some spin-chargeseparated systems which exhibit 
quite different behaviour to that usually prescribed for so-called Luttinger liquids 191. One 
should not presume that non-Fermi-liquid behaviour is a unique type of behaviour, but rather 
perhaps that any possible combination of spin and charge physics can exist in particular 
cases. The physics of spin-charge separation is probably fairly involved. 

Appendix 

In this appendix we write down two results that are elementary to prove for the freefermion 
gas, but we believe to be true for the freefermion gas plus pairing correlations. The method 
of proof is direct, involving the basic idea that for a free-fermion gas all correlation functions 
can be evaluated by adding together the contributions from every possible way to pair up 
the operators in a particular expression. The pair correlation functions form a matrix, and 
the summation, combined with the Fermi minus signs, lead directly to the observation that 
the terms can be resummed into a determinant. 

In terms of the single-particle correlations 

nj = ( f i + f i + j )  

and the pairing correlations 

we find that moving a single fermion over a certain range, with a strength depending upon 
how many of the intermediate sites are filled, yields 

... 

... 
Even 
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where Even indicates that we only include even numbers of pairing correlations, while the 
probability of finding certain configurations of fermions yields 

... 
n,-2+Sn-2 n.-3+Sn-3 n.-4+Sn-4 ... no-an-l  n1 -81 

n . - l + S , - ~  n , , -~+S, -z  n.-3+Sn-3 ... nl+& no - cu. 
We have found it difficult to formalize the method of the proof in a convenient way, 

but in short, we associate pairing contributions indirectly with the non-pairing contributions, 
with the non-interacting 'paths' between pairing contributions being spatially reversed. We 
appreciate that this explanation does bate to assist the reader, but you may like to try to 
prove it for yourself. 

All the correlation functions found in the main text are of one of these two basic formats. 

References 

[I] Hubbard J 1963 Pmc. R. Soc. A 276 238 
Long M W 1991 lm. J. Mod. Phys. B 5 865 
Anderson P W 1987 Science 235 1196 

[Z] Lieb E H  and Wu F Y 1968 Phys. Rev. Lett 20 1445 
p ]  Long M W. Castleton C W M and Hayward C A 1993 J. Phys.: Codem. Moncr 6 481 
[4] Nagaoka Y 1966 Phys. Rev. 147 392 
[SI Kanamori J 1963 Pros. Theor. Phys. 30 275 
[SI Mattis D C and Lieb E H 1965 3. Mark Pkys. 6 304 
[7] Ring exchange has recently been studied by U$ and will be dealt with at a later date. There is indeed a 

divergence in the Fourier Uansfonn. and the singularity at kp can be uaced to these correlations in our 
representation. 

[SI Shraiman B I and Siggia E D 1988 Phys. Rev. Left. 61 465 
[9] Haldane F D M 1981 3, Phys. C: SolidSrafe Phys. 14 2585 

[lo] Faddew L D and Takhtajan L A 1981 Phys. Len. 85A 375 
[ll] Long M Wand Zotos X 1993 Phys. Rev. B 48 317 


